Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

نویسندگان

چکیده مقاله:

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎, ‎whenever $r_{\Omega_X}$ is the Minkowski‎ ‎functional on $\Omega_X$ and $\nu‎ :‎[0,1)\rightarrow(0,\infty)$‎ ‎is a nondecreasing‎, ‎continuous and unbounded function‎. ‎For complex Banach spaces $X$ and $Y$‎ ‎and a holomorphic map $\varphi:\Omega_X\rightarrow\Omega_Y$‎, ‎put‎ ‎$C_\varphi( f)=f\circ \varphi,f\in\mathcal{H}(\Omega_Y)$‎. ‎We characterize those $\varphi$ for which the composition operator‎ ‎$ C_\varphi:\mathcal{A}^{\omega}(\Omega_Y)\rightarrow\mathcal{A}^{\nu}(\Omega_X)$ is a bounded or compact operator‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators between growth spaces on circular and strictly convex domain

Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...

متن کامل

weighted composition operators between growth spaces on circular and strictly convex domain

let $omega_x$ be a bounded, circular and strictly convex domain of a banach space $x$ and $mathcal{h}(omega_x)$ denote the space of all holomorphic functions defined on $omega_x$. the growth space $mathcal{a}^omega(omega_x)$ is the space of all $finmathcal{h}(omega_x)$ for which $$|f(x)|leqslant c omega(r_{omega_x}(x)),quad xin omega_x,$$ for some constant $c>0$, whenever $r_{omega_x}$ is the m...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Dynamics of non-expansive maps on strictly convex Banach spaces

This paper concerns the dynamics of non-expansive maps on strictly convex finite dimensional normed spaces. By using results of Edelstein and Lyubich, we show that if X = (R, ‖ · ‖) is strictly convex and X has no 1-complemented Euclidean plane, then every bounded orbit of a non-expansive map f : X → X , converges to a periodic orbit. By putting extra assumptions on the derivatives of the norm,...

متن کامل

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

متن کامل

wavelets, modulation spaces and pseudidifferential operators

مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 2

صفحات  182- 190

تاریخ انتشار 2020-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023